3.1.94 \(\int \frac {\cot (c+d x) (A+B \tan (c+d x))}{\sqrt {a+i a \tan (c+d x)}} \, dx\) [94]

3.1.94.1 Optimal result
3.1.94.2 Mathematica [A] (verified)
3.1.94.3 Rubi [A] (verified)
3.1.94.4 Maple [A] (verified)
3.1.94.5 Fricas [B] (verification not implemented)
3.1.94.6 Sympy [F]
3.1.94.7 Maxima [A] (verification not implemented)
3.1.94.8 Giac [F]
3.1.94.9 Mupad [B] (verification not implemented)

3.1.94.1 Optimal result

Integrand size = 34, antiderivative size = 114 \[ \int \frac {\cot (c+d x) (A+B \tan (c+d x))}{\sqrt {a+i a \tan (c+d x)}} \, dx=-\frac {2 A \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {a}}\right )}{\sqrt {a} d}+\frac {(A-i B) \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{\sqrt {2} \sqrt {a} d}+\frac {A+i B}{d \sqrt {a+i a \tan (c+d x)}} \]

output
-2*A*arctanh((a+I*a*tan(d*x+c))^(1/2)/a^(1/2))/d/a^(1/2)+1/2*(A-I*B)*arcta 
nh(1/2*(a+I*a*tan(d*x+c))^(1/2)*2^(1/2)/a^(1/2))/d*2^(1/2)/a^(1/2)+(A+I*B) 
/d/(a+I*a*tan(d*x+c))^(1/2)
 
3.1.94.2 Mathematica [A] (verified)

Time = 2.06 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.05 \[ \int \frac {\cot (c+d x) (A+B \tan (c+d x))}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {i \left (\frac {4 i A \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {a}}\right )}{\sqrt {a}}-\frac {\sqrt {2} (i A+B) \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{\sqrt {a}}-\frac {2 (i A-B)}{\sqrt {a+i a \tan (c+d x)}}\right )}{2 d} \]

input
Integrate[(Cot[c + d*x]*(A + B*Tan[c + d*x]))/Sqrt[a + I*a*Tan[c + d*x]],x 
]
 
output
((I/2)*(((4*I)*A*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/Sqrt[a]])/Sqrt[a] - (S 
qrt[2]*(I*A + B)*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/(Sqrt[2]*Sqrt[a])])/Sq 
rt[a] - (2*(I*A - B))/Sqrt[a + I*a*Tan[c + d*x]]))/d
 
3.1.94.3 Rubi [A] (verified)

Time = 0.78 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.10, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.324, Rules used = {3042, 4079, 27, 3042, 4083, 3042, 3961, 219, 4082, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot (c+d x) (A+B \tan (c+d x))}{\sqrt {a+i a \tan (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \tan (c+d x)}{\tan (c+d x) \sqrt {a+i a \tan (c+d x)}}dx\)

\(\Big \downarrow \) 4079

\(\displaystyle \frac {\int \frac {1}{2} \cot (c+d x) \sqrt {i \tan (c+d x) a+a} (2 a A-a (i A-B) \tan (c+d x))dx}{a^2}+\frac {A+i B}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \cot (c+d x) \sqrt {i \tan (c+d x) a+a} (2 a A-a (i A-B) \tan (c+d x))dx}{2 a^2}+\frac {A+i B}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {i \tan (c+d x) a+a} (2 a A-a (i A-B) \tan (c+d x))}{\tan (c+d x)}dx}{2 a^2}+\frac {A+i B}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 4083

\(\displaystyle \frac {a (B+i A) \int \sqrt {i \tan (c+d x) a+a}dx+2 A \int \cot (c+d x) (a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}dx}{2 a^2}+\frac {A+i B}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a (B+i A) \int \sqrt {i \tan (c+d x) a+a}dx+2 A \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\tan (c+d x)}dx}{2 a^2}+\frac {A+i B}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 3961

\(\displaystyle \frac {2 A \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\tan (c+d x)}dx-\frac {2 i a^2 (B+i A) \int \frac {1}{a-i a \tan (c+d x)}d\sqrt {i \tan (c+d x) a+a}}{d}}{2 a^2}+\frac {A+i B}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {2 A \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\tan (c+d x)}dx-\frac {i \sqrt {2} a^{3/2} (B+i A) \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{d}}{2 a^2}+\frac {A+i B}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 4082

\(\displaystyle \frac {\frac {2 a^2 A \int \frac {\cot (c+d x)}{\sqrt {i \tan (c+d x) a+a}}d\tan (c+d x)}{d}-\frac {i \sqrt {2} a^{3/2} (B+i A) \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{d}}{2 a^2}+\frac {A+i B}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {-\frac {4 i a A \int \frac {1}{i-\frac {i (i \tan (c+d x) a+a)}{a}}d\sqrt {i \tan (c+d x) a+a}}{d}-\frac {i \sqrt {2} a^{3/2} (B+i A) \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{d}}{2 a^2}+\frac {A+i B}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {-\frac {i \sqrt {2} a^{3/2} (B+i A) \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{d}-\frac {4 a^{3/2} A \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {a}}\right )}{d}}{2 a^2}+\frac {A+i B}{d \sqrt {a+i a \tan (c+d x)}}\)

input
Int[(Cot[c + d*x]*(A + B*Tan[c + d*x]))/Sqrt[a + I*a*Tan[c + d*x]],x]
 
output
((-4*a^(3/2)*A*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/Sqrt[a]])/d - (I*Sqrt[2] 
*a^(3/2)*(I*A + B)*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/(Sqrt[2]*Sqrt[a])])/ 
d)/(2*a^2) + (A + I*B)/(d*Sqrt[a + I*a*Tan[c + d*x]])
 

3.1.94.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3961
Int[Sqrt[(a_) + (b_.)*tan[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-2*(b/d) 
  Subst[Int[1/(2*a - x^2), x], x, Sqrt[a + b*Tan[c + d*x]]], x] /; FreeQ[{a 
, b, c, d}, x] && EqQ[a^2 + b^2, 0]
 

rule 4079
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(a*A + b*B)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(2*f*m*( 
b*c - a*d))), x] + Simp[1/(2*a*m*(b*c - a*d))   Int[(a + b*Tan[e + f*x])^(m 
 + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(b*c*m - a*d*(2*m + n + 1)) + B*(a*c*m 
- b*d*(n + 1)) + d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x], x], x], x] /; Free 
Q[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] 
 && LtQ[m, 0] &&  !GtQ[n, 0]
 

rule 4082
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(B/f)   Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x]], 
x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[ 
a^2 + b^2, 0] && EqQ[A*b + a*B, 0]
 

rule 4083
Int[(((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)]))/((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[( 
A*b + a*B)/(b*c + a*d)   Int[(a + b*Tan[e + f*x])^m, x], x] - Simp[(B*c - A 
*d)/(b*c + a*d)   Int[(a + b*Tan[e + f*x])^m*((a - b*Tan[e + f*x])/(c + d*T 
an[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - 
 a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]
 
3.1.94.4 Maple [A] (verified)

Time = 0.30 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.87

method result size
derivativedivides \(\frac {2 a \left (-\frac {\left (i B -A \right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a +i a \tan \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )}{4 a^{\frac {3}{2}}}-\frac {-i B -A}{2 a \sqrt {a +i a \tan \left (d x +c \right )}}-\frac {A \,\operatorname {arctanh}\left (\frac {\sqrt {a +i a \tan \left (d x +c \right )}}{\sqrt {a}}\right )}{a^{\frac {3}{2}}}\right )}{d}\) \(99\)
default \(\frac {2 a \left (-\frac {\left (i B -A \right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a +i a \tan \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )}{4 a^{\frac {3}{2}}}-\frac {-i B -A}{2 a \sqrt {a +i a \tan \left (d x +c \right )}}-\frac {A \,\operatorname {arctanh}\left (\frac {\sqrt {a +i a \tan \left (d x +c \right )}}{\sqrt {a}}\right )}{a^{\frac {3}{2}}}\right )}{d}\) \(99\)

input
int(cot(d*x+c)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(1/2),x,method=_RETURNV 
ERBOSE)
 
output
2/d*a*(-1/4*(-A+I*B)/a^(3/2)*2^(1/2)*arctanh(1/2*(a+I*a*tan(d*x+c))^(1/2)* 
2^(1/2)/a^(1/2))-1/2*(-A-I*B)/a/(a+I*a*tan(d*x+c))^(1/2)-1/a^(3/2)*A*arcta 
nh((a+I*a*tan(d*x+c))^(1/2)/a^(1/2)))
 
3.1.94.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 575 vs. \(2 (88) = 176\).

Time = 0.27 (sec) , antiderivative size = 575, normalized size of antiderivative = 5.04 \[ \int \frac {\cot (c+d x) (A+B \tan (c+d x))}{\sqrt {a+i a \tan (c+d x)}} \, dx=-\frac {{\left (\sqrt {2} a d \sqrt {\frac {A^{2} - 2 i \, A B - B^{2}}{a d^{2}}} e^{\left (i \, d x + i \, c\right )} \log \left (-\frac {4 \, {\left ({\left (-i \, A - B\right )} a e^{\left (i \, d x + i \, c\right )} + {\left (i \, a d e^{\left (2 i \, d x + 2 i \, c\right )} + i \, a d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {A^{2} - 2 i \, A B - B^{2}}{a d^{2}}}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right ) - \sqrt {2} a d \sqrt {\frac {A^{2} - 2 i \, A B - B^{2}}{a d^{2}}} e^{\left (i \, d x + i \, c\right )} \log \left (-\frac {4 \, {\left ({\left (-i \, A - B\right )} a e^{\left (i \, d x + i \, c\right )} + {\left (-i \, a d e^{\left (2 i \, d x + 2 i \, c\right )} - i \, a d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {A^{2} - 2 i \, A B - B^{2}}{a d^{2}}}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right ) + 2 \, a d \sqrt {\frac {A^{2}}{a d^{2}}} e^{\left (i \, d x + i \, c\right )} \log \left (\frac {16 \, {\left (3 \, A a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + A a^{2} + 2 \, \sqrt {2} {\left (a^{2} d e^{\left (3 i \, d x + 3 i \, c\right )} + a^{2} d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {A^{2}}{a d^{2}}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{A}\right ) - 2 \, a d \sqrt {\frac {A^{2}}{a d^{2}}} e^{\left (i \, d x + i \, c\right )} \log \left (\frac {16 \, {\left (3 \, A a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + A a^{2} - 2 \, \sqrt {2} {\left (a^{2} d e^{\left (3 i \, d x + 3 i \, c\right )} + a^{2} d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {A^{2}}{a d^{2}}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{A}\right ) - 2 \, \sqrt {2} {\left ({\left (A + i \, B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} + A + i \, B\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 \, a d} \]

input
integrate(cot(d*x+c)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(1/2),x, algorith 
m="fricas")
 
output
-1/4*(sqrt(2)*a*d*sqrt((A^2 - 2*I*A*B - B^2)/(a*d^2))*e^(I*d*x + I*c)*log( 
-4*((-I*A - B)*a*e^(I*d*x + I*c) + (I*a*d*e^(2*I*d*x + 2*I*c) + I*a*d)*sqr 
t(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((A^2 - 2*I*A*B - B^2)/(a*d^2)))*e^(-I* 
d*x - I*c)/(I*A + B)) - sqrt(2)*a*d*sqrt((A^2 - 2*I*A*B - B^2)/(a*d^2))*e^ 
(I*d*x + I*c)*log(-4*((-I*A - B)*a*e^(I*d*x + I*c) + (-I*a*d*e^(2*I*d*x + 
2*I*c) - I*a*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((A^2 - 2*I*A*B - B^ 
2)/(a*d^2)))*e^(-I*d*x - I*c)/(I*A + B)) + 2*a*d*sqrt(A^2/(a*d^2))*e^(I*d* 
x + I*c)*log(16*(3*A*a^2*e^(2*I*d*x + 2*I*c) + A*a^2 + 2*sqrt(2)*(a^2*d*e^ 
(3*I*d*x + 3*I*c) + a^2*d*e^(I*d*x + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1 
))*sqrt(A^2/(a*d^2)))*e^(-2*I*d*x - 2*I*c)/A) - 2*a*d*sqrt(A^2/(a*d^2))*e^ 
(I*d*x + I*c)*log(16*(3*A*a^2*e^(2*I*d*x + 2*I*c) + A*a^2 - 2*sqrt(2)*(a^2 
*d*e^(3*I*d*x + 3*I*c) + a^2*d*e^(I*d*x + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c 
) + 1))*sqrt(A^2/(a*d^2)))*e^(-2*I*d*x - 2*I*c)/A) - 2*sqrt(2)*((A + I*B)* 
e^(2*I*d*x + 2*I*c) + A + I*B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-I*d* 
x - I*c)/(a*d)
 
3.1.94.6 Sympy [F]

\[ \int \frac {\cot (c+d x) (A+B \tan (c+d x))}{\sqrt {a+i a \tan (c+d x)}} \, dx=\int \frac {\left (A + B \tan {\left (c + d x \right )}\right ) \cot {\left (c + d x \right )}}{\sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )}}\, dx \]

input
integrate(cot(d*x+c)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))**(1/2),x)
 
output
Integral((A + B*tan(c + d*x))*cot(c + d*x)/sqrt(I*a*(tan(c + d*x) - I)), x 
)
 
3.1.94.7 Maxima [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 133, normalized size of antiderivative = 1.17 \[ \int \frac {\cot (c+d x) (A+B \tan (c+d x))}{\sqrt {a+i a \tan (c+d x)}} \, dx=-\frac {\frac {\sqrt {2} {\left (A - i \, B\right )} \log \left (-\frac {\sqrt {2} \sqrt {a} - \sqrt {i \, a \tan \left (d x + c\right ) + a}}{\sqrt {2} \sqrt {a} + \sqrt {i \, a \tan \left (d x + c\right ) + a}}\right )}{\sqrt {a}} - \frac {4 \, A \log \left (\frac {\sqrt {i \, a \tan \left (d x + c\right ) + a} - \sqrt {a}}{\sqrt {i \, a \tan \left (d x + c\right ) + a} + \sqrt {a}}\right )}{\sqrt {a}} - \frac {4 \, {\left (A + i \, B\right )}}{\sqrt {i \, a \tan \left (d x + c\right ) + a}}}{4 \, d} \]

input
integrate(cot(d*x+c)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(1/2),x, algorith 
m="maxima")
 
output
-1/4*(sqrt(2)*(A - I*B)*log(-(sqrt(2)*sqrt(a) - sqrt(I*a*tan(d*x + c) + a) 
)/(sqrt(2)*sqrt(a) + sqrt(I*a*tan(d*x + c) + a)))/sqrt(a) - 4*A*log((sqrt( 
I*a*tan(d*x + c) + a) - sqrt(a))/(sqrt(I*a*tan(d*x + c) + a) + sqrt(a)))/s 
qrt(a) - 4*(A + I*B)/sqrt(I*a*tan(d*x + c) + a))/d
 
3.1.94.8 Giac [F]

\[ \int \frac {\cot (c+d x) (A+B \tan (c+d x))}{\sqrt {a+i a \tan (c+d x)}} \, dx=\int { \frac {{\left (B \tan \left (d x + c\right ) + A\right )} \cot \left (d x + c\right )}{\sqrt {i \, a \tan \left (d x + c\right ) + a}} \,d x } \]

input
integrate(cot(d*x+c)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(1/2),x, algorith 
m="giac")
 
output
integrate((B*tan(d*x + c) + A)*cot(d*x + c)/sqrt(I*a*tan(d*x + c) + a), x)
 
3.1.94.9 Mupad [B] (verification not implemented)

Time = 7.80 (sec) , antiderivative size = 515, normalized size of antiderivative = 4.52 \[ \int \frac {\cot (c+d x) (A+B \tan (c+d x))}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {A+B\,1{}\mathrm {i}}{d\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}-\frac {2\,A\,\mathrm {atanh}\left (\frac {28\,A^3\,a^{3/2}\,d\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{28\,d\,A^3\,a^2+8{}\mathrm {i}\,d\,A^2\,B\,a^2+4\,d\,A\,B^2\,a^2}+\frac {4\,A\,B^2\,a^{3/2}\,d\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{28\,d\,A^3\,a^2+8{}\mathrm {i}\,d\,A^2\,B\,a^2+4\,d\,A\,B^2\,a^2}+\frac {A^2\,B\,a^{3/2}\,d\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}\,8{}\mathrm {i}}{28\,d\,A^3\,a^2+8{}\mathrm {i}\,d\,A^2\,B\,a^2+4\,d\,A\,B^2\,a^2}\right )}{\sqrt {a}\,d}+\frac {\sqrt {2}\,\mathrm {atanh}\left (\frac {\sqrt {2}\,A^3\,{\left (-a\right )}^{3/2}\,d\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}\,7{}\mathrm {i}}{2\,\left (7\,d\,A^3\,a^2-5{}\mathrm {i}\,d\,A^2\,B\,a^2+3\,d\,A\,B^2\,a^2-1{}\mathrm {i}\,d\,B^3\,a^2\right )}+\frac {\sqrt {2}\,B^3\,{\left (-a\right )}^{3/2}\,d\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{2\,\left (7\,d\,A^3\,a^2-5{}\mathrm {i}\,d\,A^2\,B\,a^2+3\,d\,A\,B^2\,a^2-1{}\mathrm {i}\,d\,B^3\,a^2\right )}+\frac {\sqrt {2}\,A\,B^2\,{\left (-a\right )}^{3/2}\,d\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}\,3{}\mathrm {i}}{2\,\left (7\,d\,A^3\,a^2-5{}\mathrm {i}\,d\,A^2\,B\,a^2+3\,d\,A\,B^2\,a^2-1{}\mathrm {i}\,d\,B^3\,a^2\right )}+\frac {5\,\sqrt {2}\,A^2\,B\,{\left (-a\right )}^{3/2}\,d\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{2\,\left (7\,d\,A^3\,a^2-5{}\mathrm {i}\,d\,A^2\,B\,a^2+3\,d\,A\,B^2\,a^2-1{}\mathrm {i}\,d\,B^3\,a^2\right )}\right )\,\left (B+A\,1{}\mathrm {i}\right )}{2\,\sqrt {-a}\,d} \]

input
int((cot(c + d*x)*(A + B*tan(c + d*x)))/(a + a*tan(c + d*x)*1i)^(1/2),x)
 
output
(A + B*1i)/(d*(a + a*tan(c + d*x)*1i)^(1/2)) - (2*A*atanh((28*A^3*a^(3/2)* 
d*(a + a*tan(c + d*x)*1i)^(1/2))/(28*A^3*a^2*d + 4*A*B^2*a^2*d + A^2*B*a^2 
*d*8i) + (4*A*B^2*a^(3/2)*d*(a + a*tan(c + d*x)*1i)^(1/2))/(28*A^3*a^2*d + 
 4*A*B^2*a^2*d + A^2*B*a^2*d*8i) + (A^2*B*a^(3/2)*d*(a + a*tan(c + d*x)*1i 
)^(1/2)*8i)/(28*A^3*a^2*d + 4*A*B^2*a^2*d + A^2*B*a^2*d*8i)))/(a^(1/2)*d) 
+ (2^(1/2)*atanh((2^(1/2)*A^3*(-a)^(3/2)*d*(a + a*tan(c + d*x)*1i)^(1/2)*7 
i)/(2*(7*A^3*a^2*d - B^3*a^2*d*1i + 3*A*B^2*a^2*d - A^2*B*a^2*d*5i)) + (2^ 
(1/2)*B^3*(-a)^(3/2)*d*(a + a*tan(c + d*x)*1i)^(1/2))/(2*(7*A^3*a^2*d - B^ 
3*a^2*d*1i + 3*A*B^2*a^2*d - A^2*B*a^2*d*5i)) + (2^(1/2)*A*B^2*(-a)^(3/2)* 
d*(a + a*tan(c + d*x)*1i)^(1/2)*3i)/(2*(7*A^3*a^2*d - B^3*a^2*d*1i + 3*A*B 
^2*a^2*d - A^2*B*a^2*d*5i)) + (5*2^(1/2)*A^2*B*(-a)^(3/2)*d*(a + a*tan(c + 
 d*x)*1i)^(1/2))/(2*(7*A^3*a^2*d - B^3*a^2*d*1i + 3*A*B^2*a^2*d - A^2*B*a^ 
2*d*5i)))*(A*1i + B))/(2*(-a)^(1/2)*d)